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Abstract 
 

With the great influx of supernova discoveries over the past 
few years, the observation time needed to acquire the 
spectroscopic data needed to classify supernova by type has 
become unobtainable. Instead, using the photometry of 
supernovae could greatly reduce the amount of time between 
discovery and classification. For this project we looked at the 
relationship between colors and supernova types through 
machine learning packages in Python. Using data from the 
Swift Ultraviolet/Optical Telescope (UVOT), each photometric 
point was assigned values corresponding to colors, absolute 
magnitudes, and the relative times from the peak brightness in 
several filters. These values were fed into three classifying 
methods, the nearest neighbors, decision tree, and random 
forest methods. We will discuss the success of these 
classification systems, the optimal filters for photometric 
classification, and ways to improve the classification. 

. 
	
  

Introduction 
 

Type Ia supernovae (SNe Ia) are an important tool in observational cosmology 
and are characterized by a strong Si II absorption line and by an absence of a 
hydrogen absorption line in the spectroscopic data. In order to see these 
characteristics in the data, a telescope equipped with a spectrometer must be 
available. With the increased number of photometric observations of SNe, 
these spectroscopic follow-up observations become more difficult to keep up 
with. Instead, there has been an effort to classify SNe using their light curves. 
 
 
  

Figure	
  1.	
  The	
  comparison	
  of	
  light	
  curves	
  for	
  type	
  Ia	
  (le:)	
  and	
  IIP	
  (right)	
  SNe	
  in	
  the	
  six	
  Swi:	
  UVOT	
  filters.	
  

Machine learning algorithms have been implemented to classify SNe from light 
curves like those in Figure 1 (Kessler 2010, Lochner 2016). For this project we 
use the Python package Scikit-learn (Pedregosa 2011) to assess the success rate 
of three different classification methods in classifying SNe Ia. All three of the 
classifiers rely on characteristics defined by the user. From the Swift UVOT 
data, 22 characteristics (including 10 colors, 6 absolute magnitude values, and 
6 relative times from the peak brightness in each of the filters) were assigned to 
each photometric point as well as one of the possible SN types (Ia, Ib, Ic, II). 
These data structures were separated randomly into training and testing sets 
and then fed into each classifier. The output classification of the testing sets 
were compared to the recorded classification to assess the success of the 
algorithm. 

Figure 2. An example of separating SN types using only three colors. 

Data 
 
•  The data, in six filters: uvw2, uvm2, uvw1, u, b,  and v, comes from the 

Swift Optical/Ultraviolet Supernova Archive (SOUSA) 
•  Calculated  absolute magnitudes using distance moduli from Cepheids, 

star brightness fluctuations, planetary nebula luminosity functions, and 
host galaxy velocities  

•  Of the 172 SN with sufficient observation data and calculated absolute 
magnitudes, 660 photometric points were available to use for the 
classifiers. 

•  The photometric points were randomly assigned to training (396 points) 
and testing (264 points) sets 

•  Each feature, or characteristic, was assigned a number: 

Classifiers 
 

# Feature 
0 uvw2-uvw1 
1 b-v 
2 uvm2-uvw1 
3 u-v 
4 uvw2-u 
5 uvw2-uvm2 
6 uvw1-u 
7 uvw1-b 
8 uvm2-u 
9 b-u 
10 reltime uvw2 
11 reltime uvm2 

# Feature 

12 reltime uvw1 

13 reltime u 

14 reltime b 

15 reltime v 

16 UVW2 

17 UVW1 

18 UVM2 

19 U 

20 B 

21 V 

•  K Nearest Neighbors Classification (KNN) – Of the three classifiers, 
the KNN algorithm does not generate a model from which it draws 
conclusions. Instead it looks at the points in the training set and assigns 
a class to the new object based on its closest neighbors in the feature 
space. The space in which this classifier works is hard to visualize 
when there are more than three features. The k value indicates how 
many of the nearest neighbors the algorithm looks at. For this project, 
k = 15. 

•  Decision Tree Classification (DT) – This classifier builds a decision 
tree based on different cutoff values for all of the features fed into the 
program. These trees are more easily visualized when the feature list 
includes more than three characteristics.  

•  Random Forest Classification (RF)– Using the same main ideas as 
the DT classifier, this classifier creates many trees based on subsets of 
the dataset. The trees are then compared to each other to find the 
optimal decision tree.  

Figure 3. An example output for the decision tree classifier with each leaf showing the feature, 
Gini impurity, sample size, and dominant class. 

Results 
Classifier Ia precision Ia recall Total score Filters 

KNN 0.71 0.98 0.73 all six 
DT 0.82 0.98 0.81 
RF 0.76 0.99 0.79 

KNN 0.70 0.94 0.69 UV 
(uvw2,uvm2,

uvw1) 
DT 0.80 0.90 0.73 
RF 0.75 0.96 0.75 

KNN 0.75 0.94 0.72 visible  
(b,v,u) 

 
DT 0.85 0.92 0.77 
RF 0.82 0.95 0.79 

•  Ia precision - Of the photometric points classified as SNe Ia, how 
many were actually SNe Ia 

•  Ia recall – Of the points actually SNe Ia, how many were classified 
correctly 

•  Total score – Of all the points of all types, how many were classified 
correctly 

•  Because there are many different ways to define success for these 
classification systems, it depends on the reason for classification to 
determine which classifier would be the most appropriate for 
scientific use.  

•  The most successful classification algorithm from the Supernova 
Photometric Classification Challenge (Kessler 2010) produced a Ia 
precision of 0.79 and a Ia recall of 0.96. 

•  Removing either the visible or UV filters reduced the success in the 
classifiers in all of the metrics, except in the case of the removal of 
the UV filters, the Ia precision increased for all three classifiers 

Figure 4. The normalized Gini importance of each feature found from the random forest classifier    

•  Figure 4 uses average the Gini importance or the Mean Decrease in 
Impurity (MDI) over 250 decision trees to show which features had 
the biggest impact on classification 

•  The large error bars indicate there is no feature that contributes 
significantly more than the others. 

Future Work 
 
Parameterizing the entire light curves instead of relying on individual 
photometric points could lead to a higher total score. To see if some of the 
misclassifications come from missing data, we could use simulated light 
curves with no epochs of missing observations. We could see if this 
process works on other transient objects. 
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