

Calibrating DECam data: the DECal and aTmCam calibration systems

Jennifer Marshall Ting Li

Munnerlyn Astronomical Instrumentation Lab
Mitchell Institute for Fundamental Physics and Astronomy
Department of Physics and Astronomy
Texas A&M University

Texas A&M University Department of Physics and Astronomy is an institutional member of:

Precision photometry

- Ambitious science goals of modern wide-field imaging systems require precise measurements
 - DES has photometric precision requirement of 2% across entire survey area, with a goal of <1%
- Reaching this goal will require careful calibration of data
 - But it can be reached: see Ting Li's poster at this meeting
- We have now commissioned two instruments that can be used to measure the DECam total system response:
 - DECal: the daily flat field and spectrophotometric calibration systems
 - aTmCam: the Atmospheric Transmission Monitoring Camera

DECal daily flat field system

- Flat field screen
- Daily flat field system
 - LED flat field lamps
- Spectrophotometric calibration system
 - Long fiber bundle
 - Monochromator (with spectrometer monitor)
 - Monitor photodiodes

DECal spectrophotometric calibration system

- Flat field screen
- Daily flat field system
 - LED flat field lamps
- Spectrophotometric calibration system
 - Long fiber bundle
 - Monochromator (with spectrometer monitor)
 - Monitor photodiodes

Result: DES system throughput

- Measured system throughput ~5 times since Fall 2012
- Not much change in system throughput (good news!)

aTmCam

- Located on CTIO summit (next to 1m dome)
- Autonomous operation each night
- Photometrically measure atmospheric features in 4 narrowband filters
- Automatically fit atmospheric model to measurements
- Produces an atmospheric throughput model once per hour

Atmospheric transmission

- Constituents
 - Precipitable water vapor
 - Aerosols
 - (Ozone)
 - Rayleigh scattering
- Measure A stars in narrowband filters
- Fit model of atmospheric transmission to data
- Correct for atmospheric absorption to 10%
 - Enables photometric precision <1%!

Li+2012

<1% photometric precision

• DES-calibrated photometry: nights with high water vapor

Top: Δz from two exposures on different nights

Middle: points from above averaged in bins; polynomial fit to theoretically calculated errors (based on aTmCam measurements)

Bottom: Residuals after photometric correction are <2 mmag

- Without aTmCam calibration, photometric errors (on a wet night) are 9 mmag (M stars)
- With aTmCam, can calibrate to <2 mmag!

<1% photometric precision

The atmosphere is also a problem for SNe:

Top: Ratio of atmospheric transmission at PWV 3mm and PWV 10mm

Bottom: Systematic errors on SN Ia photometry due to change in PWV as a function of redshift

 Change in water vapor from 3 to 10 mm results in >1% photometric errors in z and Y bands

Conclusions

- DECal+aTmCam form a complete system response measurement system for DECam
 - DECal: top of telescope down to detector
 - aTmCam: top of telescope up through atmosphere
- Together with standard photometric calibration procedures, enable <1% photometric precision of DECam photometry
- Data products available to community
 - aTmCam results may be useful to observers at other CTIO telescopes

EXAS A&M UNIVERSITY

Stars: sources and error budget

color terms unit: mmag / mag in g-r 10mmag ~ 1%

Sources	range	u	g	r	i	Z	Y	Addition info
Instrument	center → edge		<5	5	10	5	<5	DECal
Airmass	1→2	15	20	5-10	<5	<5	<5	DECam+libRadTran
PWV	o → 10(mm)	О	0	<5	5	15	15	GPS/aTmCam +libRadTran
Aerosol optical depth	o → o.2(??)	<5	15	5	<5	O	O	aTmCam+libRadTran
Ozone	260-300(??) DU	<2	<2	<2	O	O	O	No need
Pressure	772-784 hpa	<2	<2	<2	O	0	0	No need

Note: color term is JUST first order correction when assuming that error is linear to g-r color!

Supernova: sources and error budget

SED and redshift dependent PtV errors in mmag for o<z<1

10mmag ~ 1%

Sources	range	u	g	r	i	Z	Y	Addition info
Instrument	center→edge							DECal
Airmass	1→2	60	55	15	10	10	10	DECam+libRadTran
PWV	o → 10(mm)	O	0	5	10	40	50	GPS/aTmCam +libRadTran
Aerosol optical depth	o→o.2(??)	10	40	10	5	<2	<2	aTmCam+libRadTran
Ozone	260-300(??) DU	<2	<5	<2	O	О	O	No need
Pressure	772-784 hpa	<2	<2	<2	O	0	О	No need